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EXECUTIVE SUMMARY 
 
This study developed best-practice recommendations for the utilization of satellite data for 
emissions evaluation. Because of their radiative properties, nitrogen dioxide (NO2) is among of a 
small group of gas-phase air pollutants that may be reliably detected from space. Because NO2 
has a short atmospheric lifetime, satellite-based observations of atmospheric abundance may be 
used as an indicator of fuel combustion and associated emissions. Although the characterization 
of gas-phase emissions has emerged as one of the leading areas for air quality utilization of 
satellite data, multiple atmospheric processes affect the relationship between satellite-derived 
column abundance and near surface. We evaluated two different methods to compare satellite 
NO2 with emission inventories developed by the Texas Commission on Environmental Quality 
(TCEQ).   
 
Our proposal directly responded to two Priority Research Areas for the Air Quality Research 
Program (AQRP): the use of remote sensing for (1) point source and (2) county-level emissions. 
We developed methods to leverage remote sensing capabilities to improve emission inventories, 
without undermining the process-based nature of the inventories, essential for their use in air 
quality management.  
 
Originally, our specific objectives included:  
 
1) Comparison of satellite-derived NO2 and SO2 from TROPOMI for summer 2019 with model 
simulations from a WRF and CAMx modeling system developed for the TCEQ;  
 
2) Simpler approaches to comparing NOX emissions and TROPOMI data that do not require a 
photochemical grid model, especially the Exponentially Modified Gaussian (EMG) approach. 
These simpler methods would have been extended to SO2 as resources and data integrity 
allowed. 
 
The work on SO2 was not advanced due to the limited ability TROPOMI to detect power plant 
emissions, even with the more-robust NO2 product. A limited analysis of satellite and model SO2 
results are presented in Appendix B.  
 
Both objectives were accomplished for NO2, as summarized by the following: 
 
Objective 1:  Compared to ground-based and satellite observations over the April – September 
2019 study period, CAMx shows reasonable skill in simulating near-surface NOx and ozone, as 
well as in simulating column NO2 amounts. CAMx column NO2 shows improved agreement with 
TROPOMI when emissions of lightning NOX are included. We find CAMx has a high bias in 
column NO2 relative to TROPOMI, particularly over power plants and urban areas; this may be 
partially explained by a low-bias in TROPOMI [e.g. Griffin et al., 2019; Judd et al., 2020; 
Verhoelst et al. 2021; Zhao et al., 2020]. Compared to CAMx, TROPOMI underestimates NO2 
column amounts near power plants when emissions from power plants could be meaningfully 
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differentiated from background amounts. TROPOMI and CAMx have general agreement for 
urban counties, while a detailed analysis suggests some fine-scale differences in the core 
downtown area of Dallas and city perimeters of Austin and San Antonio.  
 
Different approaches for comparing TROPOMI and CAMx were employed, including a “user-
friendly” approach based on the publicly available Wisconsin Horizontal Interpolation Program 
for Satellites (WHIPS). WHIPS was updated for TROPOMI under this grant, allowing users to grid 
data to a custom model grid. Vertical processing may then be conducted with standard averaging 
kernels associated with TROPOMI. We compared this approach with a “research-grade” 
approach where the air mass factor is recalculated from CAMx.  
 
Objective 2: We were surprised at the low fidelity of satellite retrievals of power plants – 
independent of processing and analysis approach. Even aside from satellite accuracy, multiple 
atmospheric processes decouple the relationship between emissions and column. To determine 
theoretical upper bound values, we calculated CAMx Correlations in daily modeled emissions vs. 
modeled column, which range r = 0.1 – 0.4 for the five study cities, and 0.0 – 0.5 for the five study 
power plants. As expected, actual TROPOMI vs. emissions correlations are worse for these 
theoretical upper bound values with r-values ~0 – 0.2. On longer time periods, correlations 
improve. Satellite data, on their own, offer qualitative information on emission patterns and 
trends, but are not suitable for quantitative emission inventory evaluation. 
 
The EMG method is useful for determining aggregated emissions from an urban area. The urban 
area must be large enough to suit this method. We find that Dallas is well suited to EMG, but 
smaller cities including San Antonio, Austin, and College Station are not. The EMG analysis does 
not discern mobile vs. industrial vs. power plant emissions within an urban area. The EMG 
method did not work as well as expected for power plants, because TROPOMI has difficulty 
observing the full magnitude of Texas power plant plumes. 
 
Conclusions 
 

• We sought to answer the question of whether a 3-dimensional model is necessary to 
evaluate emissions with satellite data. Indeed, we found that a 3-D model is the only tool 
for evaluating emission inventories on regional and daily scales, supporting comparison 
with ground-based and satellite data.  

• Gaussian plume methods succeed for well-detected sources over longer timescales. This 
approach offers a lower-cost strategy to account for meteorology and chemistry. 

• TROPOMI is useful for assessing overall spatial patterns in NOx emissions and in modeled 
NO2, including differences among cities, while a detailed analysis suggests difficulties in 
capturing patterns at short timescales or within individual cities.  

• We have updated the Wisconsin Horizontal Interpolation Program for Satellites (WHIPS) 
to process TROPOMI, and provided additional guidance and comparison on “user-
friendly” and “research-grade” model-satellite comparison approaches.  
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• Although this work was motivated by the idea that satellite data provides a “check” on 
models and emission inventories, there were instances where disagreement suggests 
errors in the satellite’s detection ability. For the time period of study, TROPOMI is 
surprisingly unable to capture power plant plumes, as simulated by CAMx based on CEMS. 

 
Recommendations for Future Work 
 

• A substantial portion of the NO2 column resides above the PBL and this NO2 can strongly 
influence comparisons between satellite and modeled NO2 columns. CAMx showed 
reasonable performance in simulating NO2 in the free troposphere. Nevertheless, we 
recommend continued efforts to improve the CAMx simulation of NO2 in the mid- to 
upper-troposphere by focusing on: (1) emission estimates for lightning and aircraft NOx 
(2) representation of NOx influx from the lower-stratosphere to the upper-troposphere 
(3) ventilation of NOy from the PBL to the mid-troposphere (4) photochemical production 
of NO2 from NOy (especially organic nitrates) in the mid- to upper-troposphere. 

• We found TROPOMI NO2 was generally lower than CAMx column amounts, which is 
consistent with prior work comparing TROPOMI with ground-based tropospheric column 
measurements. In fact, at the end of this study (July 2021), the TROPOMI retrieval was 
updated by ESA to address the documented low bias. Given that the new TROPOMI NO2 
algorithm generates larger values, it is likely that this new algorithm will have improved 
agreement with CAMx column NO2. It may be worthwhile to re-quantify resulting changes 
in TROPOMI relationships with emissions over urban areas, and especially over power 
plants once a new product is released for 2019. 

• We found poor agreement between TROPOMI and CAMx NO2 columns near major power 
plants in Texas. Additional study is needed with consideration of the both the TROPOMI 
data products (particularly the horizontal resolution of the a priori NO2 column used in 
calculating the averaging kernel) and the model simulations (e.g. the vertical distribution 
of NO2, photochemical lifetime of NO2 in power plant plumes) 

• Future work could address challenges with SO2, but may require careful processing to 
discern a clear emissions signal from TROPOMI. The TEMPO satellite planned for launch 
in 2022 will provide higher resolution, hourly SO2 data. These may be needed for 
meaningful SO2 analysis for Texas power plants.  
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1.0 INTRODUCTION 
This document provides the final report for the Texas Air Quality Research Program (AQRP) 
Project 20-020, “New Satellite Tools to Evaluate Emission Inventories: Is a 3-D Model Necessary?”  
The goal of Project 20-020 is to explore satellite-based methods of evaluating NOx emissions from 
power plants and cities.  
 
The project Principal Investigator is Dr. Tracey Holloway (UW Madison) with co-Principal 
Investigator Mr. Jeremiah Johnson (Ramboll).  The AQRP project manager is Dr. Elena McDonald-
Buller at the University of Texas, Austin.  The project liaison for the Texas Commission on 
Environmental Quality (TCEQ) is Mr. Mark Muldoon. 

1.1 Background 
Air quality management in Texas, like other states, is closely linked with accurate emission 
inventories. These inventories quantify chemical releases into the atmosphere from identified 
sources, and they are used as the basis of regulatory decision-making, atmospheric modelling, 
and assessment of trends. Although continuous emissions monitoring systems (CEMs) measure 
power plant emissions directly, most other emission sources are calculated based on ancillary 
data and assumptions, such as vehicle activity and land use. As such, there is some uncertainty 
in the accuracy of existing emission inventories, and potential for satellite remote sensing to 
evaluate and improve inventory development.  
 
Because of their radiative properties, nitrogen dioxide (NO2) and sulfur dioxide (SO2) are among 
of a small group of gas-phase air pollutants that may be reliably detected from satellite 
instruments [Richter and Burrows, 2002; Richter et al., 2005; Martin, 2008; Duncan et al., 2014]. 
With relatively short atmospheric lifetimes, satellite-based observations of NO2 have been found 
useful as an indicator of fossil fuel combustion and associated emissions. Spatial and temporal 
patterns in atmospheric NO2 have been shown to reflect spatial variation, day-to-day and year-
to-year changes in emissions of NOx [e.g. Martin, 2003; Lamsal et al., 2011; Mijling and Van Der 
A, 2012; Tong et al., 2016].  
 
Over the past few years, major advances have occurred in the integration of satellite data with 
air quality planning [Holloway et al., 2018]. Characterization of gas-phase emissions has emerged 
as one of the leading areas for air quality utilization of satellite data from the National 
Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric 
Administration (NOAA), and satellites launched by international space agencies.  
 
Although satellite data bear relevance to emissions characterization, atmospheric processes 
including boundary layer mixing, dispersion by winds, and photochemistry affect the relationship 
between satellite-derived column abundance and near surface emissions [e.g. Harkey, Holloway 
et al., 2015]. Additionally, the once-a-day snapshot provided by current-generation polar-orbiting 
satellites cannot account for the temporal variability in emissions [Denier van der Gon et al., 
2011], and processes that may affect the column with a delay from the surface (e.g. timing of 
NOx emissions, as discussed in Fishman et al., [2008]).  
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Satellites measure the column abundance of NO2, known as the vertical column density (VCD). 
This column is affected by surface and elevated emissions, as well as meteorology and chemistry 
in the atmosphere. Of particular note, vertical transport of pollutants in the column can affect 
the satellite’s sensing of NO2 abundance; horizontal transport of pollutants weakens the 
relationship between column NO2 and proximate emissions; and atmospheric chemistry can 
create or destroy NO2, also weakening the relationship between column NO2 and proximate 
emissions.  
 
A three-dimensional photochemical grid model (PGM) is the only method that can fully account 
for all of these processes, and there is a growing body of work of using satellite data for air quality 
model evaluation [Canty et al., 2015; Harkey et al., 2015; Kemball-Cook et al., 2015; Karambelas 
et al., 2018]. Although using a PGM represents the “gold standard” for satellite evaluation of 
emissions, this approach is costly and limiting, given the computational and personnel resources 
required for high-quality PGM simulations. To leverage satellite capabilities even without an 
atmospheric model, satellite observations of NO2 have also been directly compared with 
emissions [e.g. Jin and Holloway, 2015; Montgomery and Holloway, 2018]. For assessment of 
specific point sources and urban areas, this approach typically requires meteorological correction 
factors [de Foy et al., 2015; Goldberg et al., 2019b].  
  
All analysis in this study uses data from the TROPOspheric Monitoring Instrument (TROPOMI). 
TROPOMI is polar-orbiting with daily global coverage at a nadir resolution of 7 km × 3.5 km (5.5 
km × 3.5 km starting August 2019), launched in 2017. The spatial resolution offered by TROPOMI 
is over 10x higher than any previous gas-monitoring satellite, with the Ozone Monitoring 
Instrument (OMI; nadir resolution of 13 km × 24 km) offering the next-highest capability. 
 
Our analysis evaluates the TCEQ 2020 modeling emissions inventory in two ways, with: 1) a high-
resolution (12 and 4 km) PGM simulation; and 2) meteorological corrections on emissions 
sources, without a model. Our study goals include the validation of the TCEQ 2020 modeling 
inventory, as well as recommendations and software to support future TCEQ utilization of 
satellite data for emission evaluation.  
 
1.2 Overview of Approach 
The overarching objective of this work is to support regional evaluation of emissions inventories 
with satellite data. However, emissions are not directly comparable with the column abundance 
detected by satellites, as outlined above.  
 
To support the appropriate utilization of satellite data for emissions evaluation, we advanced and 
compared existing methods for emissions evaluation:  
 

• Compare satellite data for NO2 columns with model simulations from the high- resolution 
Comprehensive Air Quality Model with Extensions (CAMx), with input meteorology from 
the Weather Research and Forecasting (WRF) model, including seasonal and monthly 
mean difference plots across the 12 km and 4 km modeling domains and in-depth 



 
16 

difference analyses for select areas. These plots will include a “zoom in” difference plot 
over West Texas and New Mexico.   

• Evaluate the utility of satellite data for NOx emissions inventory evaluation, without the 
use of a high-resolution model 

• Evaluate how model-based emissions assessment compares to emissions assessment in 
the absence of model, finalizing recommendations, software, and algorithms 

• Develop best-practice recommendations and software to support future TCEQ utilization 
of satellite data for emission evaluation  

 
1.3 Overview of Report 
 
In Section 2, we compare simulated NO2 amounts with the high-resolution CAMx model with 
observations at our focus sites. In Section 3, we evaluate emissions from power plants and urban 
areas using the EMG method. In Section 4, we describe a direct comparison between satellite 
data and emissions from power plants and urban areas. Finally in Section 5, we present 
conclusions and recommendations for future work. Appendix A includes monthly plots for 
column NO2, and “zoom in” plots over western Texas and New Mexico. Appendix B includes 
satellite and model data for column SO2 to the limited degree it was included in this study.  
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2.0 WHAT CAN WE LEARN ABOUT EMISSIONS FROM SATELLITES + 3-D MODEL? 
 
A three-dimensional photochemical grid model (PGM) has long been considered the industry 
standard for emission inventory evaluation. Only with a PGM can one account for key chemical 
and meteorological processes linking air emissions with ambient observations. The necessity of 
accounting for chemistry and transport is true for ground-based monitors and other in situ data, 
as well as satellite and other remotely sensed data sources. This gold-standard approach formed 
the backbone of our team’s analysis, and provided a meaningful comparison for simpler methods 
discussed in future chapters.  
 
We ran the WRF and CAMx models for the 2019 ozone season, March 15 – October 15. The study 
year 2019 was selected as the first full year for which TROPOMI data are available. Ramboll 
conducted the model simulations using an existing high-resolution WRF and CAMx modeling 
platform for 2019 developed for TCEQ (Near Real-Time Exceptional Event Model; NRTEEM) 
described in Johnson et al. [2019] and summarized below. The WRF model configuration is 
unchanged from the 2019 TCEQ NRTEEM study, while the CAMx model is updated to incorporate 
emissions changes. We provide a model performance evaluation against surface monitors at the 
end of this section. 
 
2.1 Model Configuration 
2.1.1 WRF Model 
The WRF model is a mesoscale numerical weather prediction system designed to serve both 
operational forecasting and atmospheric research needs [Skamarock, 2004; 2006; Skamarock et 
al., 2005; 2008; 2019]. We used version 4.0.3 of the Advanced Research WRF (ARW) WRF in this 
study. 

We define the WRF 2014 36/12/4-km modeling domains as slightly larger than the CAMx 
36/12/4-km domains (Figure 2-1) because WRF uses the outermost boundary cells to interpolate 
from the boundary conditions outside the domain to the model solution. The 36 km CAMx 
modeling domain (red) includes all of the continental US, Mexico and large areas of Central 
America and Canada. The 12 km (blue) and East Texas 4 km (green) domains are the TCEQ State 
Implementation Plan (SIP) modeling domains. Table 2-1 presents the vertical layer mapping table 
from 43 WRF layers to 28 CAMx layers. As with the modeling domains, this layer mapping is from 
the TCEQ SIP modeling. 
 
We provide the WRF physics options and data sources in Table 2-2. This configuration is similar 
to that used for the TCEQ SIP modeling. We used 0.25° Global Forecasting System (GFS) data 
assimilation system (GDAS) analysis data1 as initial conditions for the WRF meteorological model. 
This GDAS data is also used for boundary conditions and data assimilation. 

 
1 https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-assimilation-system-gdas  

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-assimilation-system-gdas
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As part of the 2019 TCEQ NRTEEM project, we evaluated WRF meteorological performance at 
surface weather stations in Texas. This evaluation revealed reasonable performance for 
photochemical modeling applications and is documented in Johnson et al. [2019]. 
 

  
Figure 2-1. CAMx 36/12/4 km modeling domains. 
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Table 2-1. Vertical layer mapping from 43 WRF layers to 28 CAMx layers. 

WRF 
Layer
No. 

WRF Eta 
Level 

WRF Layer 
Pressure 
(mb) 

WRF 
Layer 
Top 
(m) 

CAMx 
Layer 
No. 

CAMx Layer 
Top 
(m) 

CAMx Layer  
Thickness (m) 

43 0.0000 50.00 20576       

42 0.0100 59.63 19458       

41 0.0250 74.08 18082       

40 0.0450 93.35 16616       

39 0.0650 112.61 15427       

38 0.0900 136.69 14198 28 14198 2077 

37 0.1150 160.77 13169       

36 0.1450 189.67 12120 27 12120 3586 

35 0.1750 218.57 11221       

34 0.2100 252.28 10304       

33 0.2500 290.81 9372       

32 0.2900 329.34 8534 26 8534 2030 

31 0.3300 367.87 7773       

30 0.3700 406.40 7073       

29 0.4050 440.12 6504 25 6504 1040 

28 0.4400 473.83 5969       

27 0.4750 507.54 5464 24 5464 870 

26 0.5100 541.26 4985       

25 0.5400 570.16 4594 23 4594 737 

24 0.5700 599.05 4219       

23 0.6000 627.95 3857 22 3857 684 

22 0.6300 656.85 3509       

21 0.6600 685.75 3174 21 3174 324 

20 0.6900 714.64 2849 20 2849 314 

19 0.7200 743.54 2535 19 2535 304 

18 0.7500 772.44 2231 18 2231 247 

17 0.7750 796.52 1984 17 1984 241 

16 0.8000 820.60 1743 16 1743 235 

15 0.8250 844.68 1508 15 1508 230 

14 0.8500 868.76 1279 14 1279 135 

13 0.8650 883.21 1144 13 1144 134 

12 0.8800 897.66 1010 12 1010 132 

11 0.8950 912.11 878 11 878 130 

10 0.9100 926.56 748 10 748 86 

9 0.9200 936.19 662 9 662 85 

8 0.9300 945.82 577 8 577 84 

7 0.9400 955.46 493 7 493 84 

6 0.9500 965.09 409 6 409 83 

5 0.9600 974.72 326 5 326 82 

4 0.9700 984.35 243 4 243 82 

3 0.9800 993.99 162 3 162 81 

2 0.9900 1003.62 80 2 80 48 

1 0.9960 1009.40 32 1 32 32 

0 1.0000 1013.25 0 0 0   
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Table 2-2. WRF v4.0.3 physics options and data sources used in this study. 

WRF Option Option Selected 
Analysis Data 0.25° GDAS (IC/BCs and analysis nudging on the 36 and 12 km domains) 
Microphysics WRF Single-Moment 6-class (WSM6) 
Longwave Radiation Rapid Radiative Transfer Model (RRTMG) 
Shortwave Radiation RRTMG 
Surface Layer Physics MM5 similarity 
LSM Noah 
PBL scheme Yonsei University (YSU) 
Cumulus scheme Multi-Scale Kain-Fritsch (MSKF) 

 
2.1.2 CAMx Model  
Table 2-3 provides the science options used for the CAMx simulation. We used CAMx v7.00 with 
the CB6r4 chemical mechanism. The model configuration is identical to that used for NRTEEM 
and is consistent with TCEQ SIP modeling. 
 
Table 2-3. Science options used for CAMx modeling. 

Science Options CAMx Configuration 
Version Version 7.00  
Time Zone CST 

Vertical Grid Mesh 
28 Layers with 32 m deep surface layer and 15 layers in the 
lowest 1.5 km  

Horizontal Grids 2-way nested grids with spacings of 36, 12 and 4 km  
Meteorology 2019 TCEQ NRTEEM WRF meteorology  
Chemistry Mechanism CB6r4 gas-phase mechanism  
Chemistry Solver EBI 

Photolysis Rates 
TUV version 4.8 with TOMS ozone column adjustment and 
in-line adjustment for clouds 

Advection Scheme Piecewise Parabolic Method (PPM) 
Planetary Boundary Layer (PBL) 
mixing 

K-theory with KV100 patch to enhance vertical mixing over 
urban areas within the lowest 100 m 

In-line Ix Emissions On Inorganic iodine (Ix) emissions from saltwater areas  
Parallelization MPI (12 threads) and OMP (2 threads) 

 
2.1.2.1 Modeling Emissions Inventory 
We updated the CAMx modeling emissions inventory from 2019 NRTEEM to incorporate 
anthropogenic emissions from the projected 2020 TCEQ modeling inventory (closest to 2019 
available; the 2019 NRTEEM project had used a 2017 modeling inventory), and 2019 hourly CEMS 
data for electrical generating units (EGUs) that are a focus of our analysis.  
 
The 2020 modeling emissions inventory did not include impacts of the social and economic 
response to COVID-19, which was advantageous for this application since we modeled the 2019 
ozone season. Table 2-4 provides NOx and VOC emission summaries for an average summer 
weekday across the entire CAMx 4 km domain. As described later in this report, we decided not 
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to adjust mobile NOx emissions after finding good agreement between mobile NOx emissions 
and satellite NO2 columns. 
 
Table 2-4. CAMx 4 km domain-wide summary of average summer weekday emissions (tons per day) by sector. 

Emission Sector NOx (tpd) VOC (tpd) 
On-road mobile 412.8 192.0 
Off-road mobile* 472.3 178.9 
Area 279.2 1,372.4 
Oil and Gas 428.1 1,283.1 
Non-EGU Point Sources 531.4 443.7 
EGU Point Sources 321.6 7.2 
MEGAN biogenic 2,947.2 46,548.0 
Wildfires 40.8 136.8 

* Includes non-road, locomotives, airport and commercial marine vessel emissions 
 
2.1.2.2 Anthropogenic Emissions Inventory 
TCEQ developed the 2020 modeling emissions inventory for the Dallas-Fort Worth (DFW) and 
Houston-Galveston-Brazoria (HGB) Reasonable Further Progress (RFP) State Implementation 
Plan (SIP) revision. We provide summaries of data sources used for the point sources in Table 2-5 
and on-road mobile sources in Table 2-6. Table 2-7 provides data sources for the non-road 
mobile, area and oil and gas emissions sources. These tables are adapted from TCEQ’s HGB and 
DFW RFP SIP revision and the only change that we implemented for this study is the update from 
2018 to 2019 EPA Clean Air Markets Division (CAMD) Air Markets Program Data (AMPD) hourly 
data for EGU point sources. 
 
In general, TCEQ estimated 2020 emissions by projecting forward in time from a base year 
inventory (see Table 2-5 and Table 2-7) and accounting for growth in activity as well as existing 
federal, state, and local emission controls. The 2020 modeling emissions benefit from the Federal 
Tier 3 Vehicle Emission and Fuel Standards Program, the Midlothian Cement Kiln caps and the 
EPA’s final Cross-State Air Pollution Rule (CSAPR) update2.  

  

 
2 
https://www.tceq.texas.gov/assets/public/implementation/air/sip/dfw/dfw_ad_sip_2019/DFWAD_19078SIP_App
endix_B_pro.pdf  

https://www.tceq.texas.gov/assets/public/implementation/air/sip/dfw/dfw_ad_sip_2019/DFWAD_19078SIP_Appendix_B_pro.pdf
https://www.tceq.texas.gov/assets/public/implementation/air/sip/dfw/dfw_ad_sip_2019/DFWAD_19078SIP_Appendix_B_pro.pdf
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Table 2-5. Data sources for point source emissions inventory. Adapted from Table 1-4 Appendix B of TCEQ’s HGB and DFW RFP SIP 
Revision.  

Region  Data Source  
Texas  2016 State of Texas Air Reporting System (STARS) for non-EGUs  

Other States  
2011 EPA Modeling Platform interpolated for 2020 using 2017 and 2023, for non-
EGUs  

All States  2019 EPA CAMD AMPD hourly data for EGUs* 

Offshore  
2011 Bureau of Ocean Energy Management (BOEM) Gulf-wide Emission Inventory 
(GWEI) platforms of western Gulf of Mexico  

Mexico  
2017 and 2023 Mexican EI from 2011 EPA Modeling Platform, interpolated for 
2020  

Canada  2023 Canadian EI from 2011 EPA Modeling Platform  
  * TCEQ’s 2020 modeling emission inventory used 2018 EPA CAMD AMPD hourly data for EGUs 
 

Table 2-6. Data sources for on-road mobile source emissions inventory. Adapted from Table 1-5 Appendix B of TCEQ’s HGB and 
DFW RFP SIP Revision.  

Region  Data Source  

Texas  
2020 based on MOVES2014a3 emission rates and Highway Performance 
Monitoring System (HPMS) for Vehicle Miles Traveled (VMT) activity estimates.  

Outside Texas  2020 based on MOVES2014 July default runs.  
 

Table 2-7. Data sources for non-road mobile, area and oil and gas emissions inventory. Adapted from Table 1-6 of Appendix B of 
TCEQ’s HGB and DFW RFP SIP Revision.  

Region  Non-Road Mobile Sources  Area Sources  Oil and Gas Sources  

Texas  2020 run of Texas NONROAD 
(TexN) model, version 2  

2017 Texas Air Emissions 
Repository (TexAER) 
projected to 2020  

Texas Railroad 
Commission data and 
equipment-specific 
emission rates.  

Non-Texas 
U.S.  

2020 run MOVES2014b4  2014 EPA National 
Emissions Inventory 
(NEI)  

2014 EPA NEI  

Canada  2011 EPA Modeling Platform  2011 EPA Modeling 
Platform  

2011 EPA Modeling 
Platform  

Mexico  2011 EPA Modeling Platform  2011 EPA Modeling 
Platform  

2011 EPA Modeling 
Platform  

 

2.1.2.2.1 2019 EGU Emissions Based on CEMS  
We developed hourly-specific EGU emissions using hourly measurements from the EPA’s CAMD. 
Most EGUs use CEMS to report emissions under the Clean Air Act, including emissions of sulfur 
dioxide (SO2), NOx, and CO2, along with other parameters such as heat input. The EPA’s CAMD 
quality controls the reported raw hourly measurements which they provide on the AMPD 

 
3 https://19january2017snapshot.epa.gov/moves/moves2014a-latest-version-motor-vehicle-emission-simulator-
moves_.html  
4 https://www.epa.gov/moves/information-running-moves2014b  

https://19january2017snapshot.epa.gov/moves/moves2014a-latest-version-motor-vehicle-emission-simulator-moves_.html
https://19january2017snapshot.epa.gov/moves/moves2014a-latest-version-motor-vehicle-emission-simulator-moves_.html
https://www.epa.gov/moves/information-running-moves2014b
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website5.  We downloaded hourly data from EPA’s AMPD website for the continental US for 
March through October 2019. Stack parameters were based on EPA’s 2017 NEI data. The 2017 
NEI data with matching CEM facilities in Texas were then adjusted to their 2019 annual totals. 
Table 2-8 provides 2019 annual CEMS NOx emissions for the five power plants examined in detail 
in this study. 

Table 2-8. 2019 annual NOx emissions for the five power plants examined in this study. 

Station NOx (tons/yr) 

Martin Lake Electrical Station 9,489 

Limestone Electric Generation Station 7,470 

Sam Seymour (Fayette) Power Project 6,210 

Oklaunion Power Station 5,214 

Forney Energy Center 1,249 

 

2.1.2.3 Natural Emissions 
We estimated biogenic emissions for 2019 from the Model of Emissions of Gases and Aerosols 
from Nature v3.1 developed by Ramboll in AQRP project 18-005; (MEGAN; [Guenther et al., 
2006]), and fire emissions from Fire INventory of NCAR (FINN) version 1. Finally, we developed 
lightning NOx emissions with the CAMx LNOx processor6 using the 2019 WRF meteorological 
data. 
 
2.2 Near-Surface Model Performance Evaluation 
We evaluated CAMx NOx and ozone surface concentrations using data collected at TCEQ 
Continuous Air Monitoring Stations (CAMS). We evaluated performance by geographical 
subregions by grouping monitors as shown in Table 2-9, which also reports the number of NOx 
and ozone monitors in each region. College Station does not have ozone or NOx monitoring, so 
we chose Waco (one TCEQ CAMS with NOx monitoring; three with ozone monitoring) instead. 
Similarly, Shreveport does not have NOx monitoring, so we chose Tyler (three TCEQ CAMS with 
NOx and ozone monitoring) instead. 
 
Table 2-9. Number of TCEQ CAMS NOx and ozone monitors for the five study areas. 

City # of NOx monitors # of Ozone monitors 

Dallas/Fort Worth 15 20 
San Antonio 5 12 
Austin  2 11 
College Station (Waco) 0 (1) 0 (3) 
Shreveport (Tyler) 0 (3) 0 (3) 

 

 
5 https://ampd.epa.gov/ampd/  
6 Available at https://www.camx.com/download/support-software/  

https://ampd.epa.gov/ampd/
https://www.camx.com/download/support-software/
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NOx monitors deployed for routine monitoring, e.g., at TCEQ CAMS, have limitations for NO2.  
These monitors measure NO and consequently NO2 is chemically converted to NO for 
measurement. However, the converter also captures other compounds including peroxyacyl 
nitrate (PAN) and a portion of HNO3. These NOx monitors have a detection limit of around 1 ppb 
but differentiation between NO and NO2 is less accurate near the detection limit. Therefore, we 
compare both CAMx NOx (i.e., NO + NO2) and NOy (i.e., NO + NO2 + PAN compounds + HNO3) to 
monitored NOx in Figure 2-2. These scatter plots show hourly midday (12-3 PM CST to correspond 
with TROPOMI overpass times) measurements and model pollutant concentrations at all of the 
TCEQ CAMs located in each region: Austin (top left), San Antonio (top right), Tyler (middle left), 
Waco (middle right) and Dallas-Fort Worth (bottom). 
 
High observed NOx detected by ground monitors in urban areas (e.g. > 10 ppb) are not resolved 
at the CAMx model’s 4 km horizontal grid resolution. For example, Dallas Hinton St (CAMS 0401) 
is located 0.9 km from a major freeway interchange and 200 m from a busy road (Mockingbird 
Lane). In contrast, Tyler Airport (CAMS 0082) is in a rural location removed from busy roads and 
the nearby airport is regional and not highly trafficked.  
 
When compared with monitored NOx in less polluted areas (i.e. < 10 ppb), CAMx NOx tends to 
be lower than measured NOx whereas CAMx NOy tends to be higher than measured NOx. We 
therefore conclude that CAMx is consistent with the ambient NOx measurements within 
limitations of the monitoring equipment capabilities and siting.  
 
We present similar scatter plots for maximum daily 8-hour average (MDA8) ozone in Figure 2-3. 
CAMx shows skill in identifying low and high ozone days, with R2 values from 0.56 (Austin) to 0.61 
(Tyler). CAMx displays a positive ozone bias across all five regions, with mean bias (MB) ranging 
from 4.8 ppb (Waco) to 10.1 ppb (San Antonio). Emery et al. [2017] defines the criteria standards 
for MDA8 ozone as ± 15% for normalized mean bias (NMB) and < 25% for normalized mean error 
(NME). Only Waco and Dallas-Fort Worth meet the criteria standard for NMB, while all regions 
except San Antonio meet the criteria standard for NME. 
 
To determine how well CAMx estimates ozone production at the scale of a single metropolitan 
area, we calculate the local increment (LI) to MDA8 ozone as the difference between the 
downwind and upwind ozone.  For metropolitan areas with an extensive monitoring network, 
such as Dallas-Fort Worth (DFW), the LI can be computed from observations and compared to 
the model simulation. The LI of ozone is sensitive to local ozone precursor emissions and the 
conduciveness of the atmosphere to ozone production on each day. Figure 2-4 displays a map of 
all DFW CAMS. We classify the monitors with green pushpins as potential background sites 
(meaning that when they are upwind of the urban area, they are indicative of background) and 
calculate the median MDA8 ozone concentration across these monitors for each day. Then we 
find the difference between this background value and the maximum MDA8 ozone concentration 
across all monitors in the same region. We refer to this difference as the MDA8 ozone LI. We 
perform the corresponding calculation on the model simulation. 
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In Figure 2-5, we present quantile-quantile (Q-Q) plots for Dallas MDA8 ozone LI for April 15-
October 15, 2019. Q-Q plots are useful to understand whether the model is capable of simulating 
the full range of observed MDA8 ozone LI. Q-Q plots can be considered a less stringent measure 
of model performance because the model and observations are not paired in time or space. 
However, the Q-Q plots reveal more about how well the model simulates days when background 
ozone dominates (low LI) as well as days when local ozone production is high (high LI). The x-axis 
shows the observed LI and the y-axis shows CAMx LI. The plot shows very good agreement, with 
a slight underestimation that occurs throughout the full range of observed LI.  
 
In summary, we find that CAMx shows good skill in identifying low and high ozone days for cities 
in Texas with R2 values from 0.56 (Austin) to 0.61 (Tyler). CAMx has a positive ozone bias that is 
regional across eastern Texas and sometimes exceeds model performance criteria, although 
CAMx meets model error criteria for all cities evaluated. Using the extensive ozone monitoring 
network for DFW we determined that CAMx performs well in simulating the amount of ozone 
produced by emissions in the DFW area. We attempted to evaluate CAMx NO2 performance using 
data from standard NOx instruments, focusing on the mid-day time period when satellite NO2 
measurements are made, but the evaluation was hampered by instrument detection limits and 
locations. 
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Figure 2-2. Hourly CAMx midday (12-3 PM CST) NOx (orange) and NOy (blue) plotted against observed NOx across all TCEQ CAMS 
sites within Austin (top left), San Antonio (top right), Tyler (middle left), Waco (middle right) and Dallas-Fort Worth (bottom) for 
the March 15 – October 15, 2019 modeling period. 



 
27 

 
Figure 2-3. CAMx and observed MDA8 ozone across all TCEQ CAMS sites within Austin (top left), San Antonio (top right), Tyler 
(middle left), Waco (middle right) and Dallas-Fort Worth (bottom) for the March 15 – October 15, 2019 modeling period. 
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Figure 2-4. Map of Dallas-Fort Worth CAMS monitoring locations. The nine potential background sites have green markers and 
are labelled.  

 
Figure 2-5. Quantile-quantile plot for Dallas MDA8 ozone local increment for March 15-October 15, 2019.  
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2.3 Model Performance Evaluation with TROPOMI 
As a polar-orbiting satellite with an afternoon overpass, care must be taken in the interpretation 
of TROPOMI column retrievals as an indicator of near-surface emissions [Streets et al., 2013; 
Goldberg et al., 2019b; Penn and Holloway, 2020]. TROPOMI provides “snapshots” at the same 
time each day, except as limited by cloud cover, surface albedo, or instrument errors. 
 
The TROPOMI data are provided as irregular quadrilaterals, a typical “level-2” data format. Each 
polygon value reflects the column total of NO2. However, the instrument is more sensitive to 
some layers of the atmosphere, so this column total should be considered the weighted vertical 
integral of NO2, with some layers weighted more than others.  
 
For comparison with CAMx, we gridded TROPOMI data to the model grid using the publicly 
available Wisconsin Horizontal Interpolation Program for Satellites (WHIPS)7. WHIPS regrids the 
irregular polygons provided by “level-2” data and allocates the data on a specified grid using a 
variety of available gridding algorithms. In this sense, WHIPS allows users to create custom “level-
3” data products for comparison with each other or model data on a common grid.  
 
WHIPS was first updated to support TROPOMI data, then used to grid TROPOMI NO2 data to both 
the 12 km and 4 km CAMx modeling domains. Though WHIPS calculates a common horizontal 
grid for the model and satellite observations, treatment of vertical sensitivity requires additional 
model processing to calculate a satellite equivalent VCD from vertical model layers. The most 
user-friendly approach involves an “averaging kernel” specific to a satellite data product may be 
as the weights in a weighted vertical integral (we refer to this as AK).  
 
We also calculate the satellite air mass factor (AMF) using the model column and used to rescale 
the satellite data (we refer to this as the “research-grade” approach below, as significant 
resources are required to create the AMF-recalculated version of TROPOMI).  
 
Finally, in the interest of comparing less computationally intensive methods, we also consider the 
results of summing layers without applying the averaging kernel, which gives more weight to 
near-surface concentrations, and thus larger NO2 column amounts over urban areas (we refer to 
this as the “Summation” method). It should be noted that the summation approach does not 
capture the known sensitivity of the satellite to the upper troposphere, so these results should 
be considered illustrative only.  
 
For the domain wide analyses, the AK and Summation methods are used; for city- and power-
plant specific analyses, including EMG, the AMF and Summation methods are used.  In both cases, 
the weighted approach to calculating the vertical column (AK or AMF) is considered the more 
scientifically defensible approach; Summation is given to highlight the sensitivity of results to the 
vertical processing approach.  

 
7 https://nelson.wisc.edu/sage/data-and-models/software.php 
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For the domain-wide comparisons, we screened TROPOMI NO2 for a cloud fraction greater than 
0.5, a solar zenith angle greater than or equal to 82 degrees, and a quality assurance flag value 
greater than 0.5, which is appropriate for work where the averaging kernel is applied to model 
columns [Eskes et al., 2021]. Unless otherwise noted, we applied the gridded TROPOMI NO2 
averaging kernel to the model output following Deeter [2002] and as used in prior model 
evaluation work by Harkey et al. [2015] and Harkey et al. [2021]. We also present model column 
NO2 calculated as a vertical integration without the averaging kernel for reference. For our 
comparisons with an updated AMF, TROPOMI data were screened for a quality assurance flag 
greater than 0.75. 
 
2.3.1 Domain-Wide Evaluation with TROPOMI 

 
Figure 2-6. April – September 2019 average NO2 column amounts from TROPOMI as gridded with WHIPS (top) and CAMx with the 
averaging kernel applied (middle row), and CAMx without the averaging kernel (bottom row) for the 12 km domain (left column) 
and 4 km domain (middle column). Absolute difference between CAMx and TROPOMI shown in right column. 

Over both the 12 km and 4 km model domains, gridded TROPOMI captures elevated column NO2 
amounts over large urban areas such as Dallas – Fort Worth, Houston, and San Antonio, as well 
as the I-35 corridor linking San Antonio, Austin, and Dallas – Fort Worth (Figure 2-6, top row). 
Modeled column NO2 is less diffuse than observed, with higher column amounts that are more 
spatially concentrated. For example, for the 4 km domain, observed column amounts over Dallas 
and Fort Worth are close to 3 x 1015 molecules/cm2, while the largest column amounts modeled 
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for the area are found over Fort Worth, and are closer to 4 x 1015 molecules/cm2; observed 
column amounts over the Martin Lake power plant in northeastern Texas are elevated relative 
to the background, but below 3 x 1015 molecules/cm2, while simulated amounts are over 6 x 1015 
molecules/cm2 (Figure 2-6) for a single grid cell. The overall agreement between TROPOMI and 
CAMx column NO2, with model overestimates relative to TROPOMI at power plants and most 
urban areas, is also evident on a monthly basis (Appendix A). However, we note that while a 
positive bias exists across both domains for the majority of the study period, in April there is an 
overall negative bias, and the largest positive bias occurs in August, which suggests seasonal 
differences between modeled and observed column NO2.  

The CAMx and TROPOMI results were compared using standard performance metrics, given 
below in Table 2-10. We find the model simulations compare favorably to TROPOMI for the April 
– September 2019 study period, with small overestimates of NO2 column amounts compared to 
TROPOMI. As expected, the 4 km simulation performs somewhat better than the 12 km 
simulation, and application of the averaging kernel slightly improves agreement as well, such that 
the 4 km with AK exhibits the lowest RMSE (0.79) and highest r value (0.43) (Table 2-10).  

 
Table 2-10. TROPOMI and CAMx model mean column NO2 for the period April – September 2019 and associated error metrics for 
both model domains, with and without the application of the averaging kernel. All units in 1015 molecules/cm2 unless otherwise 
noted. 

 
Domain 

Mod
el 
Mea
n 

TROPOMI 
Mean 

  
RMSE 

Mean 
Error 

Mean 
Fractional 
Error (%) 

Mean 
Bias 

Mean 
Fractional 
Bias (%) 

  
r 

12km (with AK) 1.19 1.02 0.91 0.45 47.94 0.16 24.55 0.36 
12km  
(no AK) 

1.17 1.02 1.09 0.47 42.83 0.15 15.37 0.30 

4km (with AK) 1.29 1.12 0.79 0.49 43.50 0.17 21.65 0.43 
4km  
(no AK) 

1.19 1.12 0.85 0.49 67.88 0.07 38.95 0.34 
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2.3.2 Effects of a priori profiles & Lightning NOx 

 

Figure 2-7. (Left) NO2 concentration vertical profiles between the surface and 12 km altitude from the CAMx regional model with 
and without lightning NOx emissions, and 2013 NASA SEAC4RS field campaign for the E Texas model domain. (Right) NO2 shape 
profiles from the same three model simulations and the TROPOMI tropospheric averaging kernel 

We investigated the effects of lightning NOx emissions on the vertical distribution of NO2 in CAMx 
by conducting a sensitivity simulation that excluded lightning NOx. In the right-hand panel of 
Figure 2-7, the vertical sensitivity of TROPOMI is denoted by the averaging kernel; the satellite is 
nearly three times more sensitive to NO2 at an altitude of 12 km than at the surface. In the CAMx 
simulation with lightning NOx emissions, NO2 between 6 km and 12 km nearly doubled and better 
matched observations from a SEAC4RS flight campaign in the Southeast United States during July 
2013. Between 3 and 6 km it appears that there was still a model underestimate although the 
comparison is uncertain because model simulations and SEAC4RS measurements are for different 
years (2019 and 2013, respectively). An accurate simulation of mid- to upper-tropospheric NO2 
is an important consideration when evaluating NOx emissions using satellite data and a PGM.  
 
The tropospheric NO2 columns observed by TROPOMI vary considerably across Texas as seen in 
Figure 2-6 with larger column amounts observed over major cities. Combining the CAMx NO2 
height profiles and TROPOMI averaging kernel from Figure 2-7 explains how the contribution of 
ground-level NOx emissions to column NO2 also varies across Texas, as shown in Figure 2-8.  Over 
major cities such as Dallas (DFW) and Houston (HGB) where the column NO2 reaches 3—4  x 1015 
molecules/cm2 about 80% of the total NO2 column (as observed by TROPOMI) resides in the 
lowest 2 km of the atmosphere where surface NOx emissions are certainly the dominant 
influence on NO2. In contrast, over the Gulf of Mexico (Gulf) and West Texas (WTx) where the 
column NO2 is less than 1 x 1015 molecules/cm2 only about 20% (or less) of the total NO2 column 
resides in the lowest 2 km of the atmosphere with the majority of NO2 observed by TROPOMI 
attributable to lightning NOx (LNOx) and other background sources. This explains why satellites 
such as TROPOMI can be much more successful at characterizing surface NOx emissions over 
major cities than rural areas. For intermediate size cities, such as San Antonio (SAT) and Austin 
(AUS), LNOx and other sources contribute about one third to half of the NO2 column and thus 
uncertainties in characterizing the contributions of LNOx and other sources will be a limiting 
factor in using satellite data to characterize surface NOx emissions. 
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Figure 2-8. Apportionment of the total NO2 column observed by TROPOMI to the lowest 2 km of the troposphere, lightning NOx 
emissions (LNOx) and other background sources. Regions of Texas are marked according to their approximate total NO2 column 
observed by TROPOMI. 

 
2.3.3  Evaluation with TROPOMI Over Urban Areas and Power Plants 
 
To support our evaluation of the TCEQ emissions inventory, we examined CAMx column NO2 over 
five urban areas and five power plants. Power plants were chosen because the accuracy of the 
CEMS data allowed us to evaluate methods of controlling for meteorology to link emissions and 
satellite-derived column densities. Vehicle emissions in urban areas were compared among cities 
with emission inventories developed in greater detail (link-based travel demand model) and 
lesser detail (MOVES defaults) to investigate whether inventory methodology influences the 
comparison. We considered the following study areas: 
  
a) Five power plants in Texas with significant NO2 (sources are in Table 2-11). These large and 

relatively isolated point sources have well-constrained emissions measured by CEMS. They 
were evaluated by comparing the PGM and TROPOMI results, as well as to test the 
methodology of Goldberg et al. [2019b] to capture emissions correctly without the use of 
an atmospheric model. We studied sources with differing spatial isolation, surrounding 
emissions, and fuel.   
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b) Five cities in Texas with significant on-road vehicle contribution to NOX emissions are 
selected for evaluation with both the model and no-model approach (see Table 2-11). These 
cities were selected to represent three different methodologies for developing mobile 
source emission inventories: i) emissions factors from the EPA MOtor Vehicle Emissions 
Simulator (MOVES) combined with activity from a link-based travel demand model 
(Dallas/Fort Worth and San Antonio); ii) emissions factors from MOVES combined with Texas-
specific but non link-based activity (Austin and College Station); iii) default activity and 
emission factors from MOVES (Shreveport). We hypothesized that cities using more 
advanced mobile source activity data would show improved agreement with satellite NO2, 
both in the CAMx framework and using the Goldberg et al. [2019a] adjustments. We did not 
select Houston for evaluation due to its complex meteorology (bay and gulf breezes that can 
recirculate emissions; Banta et al., [2005]) and diverse emissions inventory with many 
important source sectors. 

 

Table 2-11. Power plants and cities proposed for evaluating the TCEQ emissions inventory.  Power plant emission rates are from 
EPA Acid Rain Data for the 2018 ozone season 

 

Power 
Plant Comments 

Martin Lake  Largest 2018 NOx point source in Texas; lignite and coal; rural high 
biogenic area; major sources ~15 mile distant; (NOx 7241 ton/y in 2018)  

Limestone High NOx; lignite and coal; rural high biogenic area; gas production 
nearby; (NOx 5676 ton/y in 2018)  

Oklaunion  High NOx; coal; rural moderate/low biogenic area; (NOx 4495 ton/y in 
2018).  Decommissioned in 2020 but active in 2019. 

Sam Seymour 
(Fayette) 

High NOx; coal; rural high biogenic area; between Austin and Houston; 
aka Fayette; (NOx 4730 ton/y in 2018) 

Forney Energy 
Center Moderate NOx; gas; rural outskirts of Dallas; (NOx 782 ton/y in 2018)  

City   
Dallas/Fort 
Worth 

Combined population 2.2 million; Mobile source emissions link-based 
with city-specific MOVES inputs  

San Antonio Population 1.5 million; Mobile source emissions link-based with city- 
specific MOVES inputs  

Austin Population 1.0 million; Mobile source emissions non-link-based with city- 
specific MOVES inputs  

College Station Population 0.12 million; Mobile source emissions non-link-based with 
city-specific MOVES inputs  

Shreveport Population 0.19 million; Mobile source emissions non-link-based with 
default MOVES inputs  
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2.3.3.1 Comparison of column NO2 over cities 
 
2.3.3.1.1 Comparison with model columns calculated with the TROPOMI averaging kernel 
 
For our five study cities, model column NO2 amounts are greater than those observed by 
TROPOMI, with model mean biases ranging from 0.01 - 0.41 x 1015 molecules/cm2 for the study 
period (Table 2-12). The high model bias may be partially related to a TROPOMI algorithm low 
bias.  We found the greatest correlation between TROPOMI and modeled column NO2 over the 
Dallas – Fort Worth area (r = 0.40, Table 2-12). The comparisons in Figure 2-9 also show that 
when TROPOMI NO2 column amounts are higher (> 5 x 1015 molecules/cm2), modeled amounts 
tend to be low, most notably for Austin, College Station, and Shreveport, and to a lesser extent, 
Dallas – Fort Worth. This suggests that while the model has a small overall high bias relative to 
TROPOMI, there are challenges in simulating days with elevated emissions, or in capturing mixing 
and transport to the vertical levels where TROPOMI is most sensitive. 

 
Figure 2-9. TROPOMI and CAMx column NO2 for the period April – September 2019 for five cities, as defined by the counties 
including each city: Austin (Travis County), College Station (Brazos County), Dallas and Fort Worth (Dallas and Tarrant Counties, 
respectively), San Antonio (Bexar County), and Shreveport (Caddo County). 
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Table 2-12. TROPOMI and CAMx model mean column NO2 for the period April – September 2019 and associated error metrics for 
five cities. All values except r have units of 1015 molecules/cm2 unless otherwise noted. 

City  
(county) 

Model 
Mean 

TROPOMI 
mean 

  
RMSE 

Mean 
Error 

Mean 
Fractional 
Error (%) 

Mean 
Bias 

Mean 
Fractional 
Bias (%) 

  
r 
 

Austin  
(Travis) 

1.65 1.47 1.03 0.66 41.47 0.19 14.60 0.16 

College 
Station 
(Brazos) 

1.59 1.49 1.56 0.78 41.61 0.10 12.16 0.01 

Dallas-Fort 
Worth 
(Dallas and 
Tarrant) 

2.26 2.18 1.37 0.90 31.16 0.01 -5.42 0.40 

San 
Antonio  
(Bexar) 

2.02 1.61 1.22 0.80 46.12 0.41 25.48 0.26 

Shreveport  
(Caddo) 

1.53 1.27 1.16 0.68 48.19 0.25 24.07 0.16 

 

2.3.3.1.2 Comparison with model columns calculated with “research-grade” versions of 
TROPOMI 

 
We developed three “research-grade” TROPOMI NO2 products to aid in the comparison. In the 
first “research-grade” TROPOMI NO2 product (“TROPOMI NO2 bias-corrected (b-c)”), the 
TROPOMI values are multiplied by a factor 1.25 to remove low bias in the algorithm [Judd et al., 
2020; Verhoelst et al., 2021]. In a second “research-grade” TROPOMI NO2 product (“TROPOMI 
NO2 b-c CAMx AMFs”), the air mass factor and tropospheric vertical column are re-calculated 
using the PGM and applied to the first “research-grade” bias-corrected product. In a third 
“research-grade” TROPOMI NO2 product (“TROPOMI NO2 b-c CAMx AMFs + Downscaled”), we 
use the second “research-grade” product and then use spatial model variability to regrid the 
satellite measurements to the 4 km PGM grid [Kim et al., 2016]. The most appropriate 
comparison for NO2 is between the PGM and “TROPOMI NO2 CAMx b-c AMFs + Downscaled” 
product.  
 
When comparing CAMx to these research-grade TROPOMI products over a 6-month average 
(April – Sept), there is excellent model agreement (Figure 2-10). On an urban scale, CAMx has 
more NO2 near the DFW airport and less NO2 in downtown Dallas and east of the city. In San 
Antonio and Austin, both cities had good agreement in the downtown areas, but TROPOMI 
underestimates the NO2 near large point sources on the perimeter of the city. The TROPOMI 
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signals in College Station and Shreveport were too close to the background concentration to 
perform a meaningful analysis. 
 

 
Figure 2-10. NO2 tropospheric vertical column amounts averaged across April – September 2019 from TROPOMI, TROPOMI bias-
corrected, TROPOMI b-c CAMx AMFs, TROPOMI b-c CAMx AMFs + Downscaled, and CAMx for the largest four metropolitan areas 
(Dallas, San Antonio, Austin and Houston). (Right) Scatterplot showing slope and correlation of various TROPOMI configurations 
and CAMx. 

2.3.3.2 Comparison of column NO2 at power plants 
2.3.3.2.1 Comparison with model columns calculated with the TROPOMI averaging kernel 
 
We find simulated NO2 column amounts are greater than those observed over the five power 
plant locations of focus, as observed amounts are always < 10 x 1015 molecules/cm2 while 
modeled column NO2 ranges from three times greater (Forney, Oklaunion; Figure 2-11) to ten 
times greater (Martin Lake; Figure 2-11). As shown in Figure 3-1, TROPOMI observations do not 
capture the same finer-scale features as the model. This difference is likely related to the 
relatively small spatial footprint of an individual power plant NO2 plume relative to the native 
TROPOMI resolution (7 km x 3.5 km) which may be further degraded by re-gridding to 4 km x 4 
km resolution. However, even when TROPOMI is unable to spatially-resolve a relatively narrow 
NO2 plume, the satellite measurement should be able to quantify the amount of NO2 in the plume 
because each satellite pixel inherently represents the average NO2 over the pixel area (i.e., mass 
of NO2 should be conserved in the satellite detection, as well as in the subsequent data 
processing). The comparisons presented in Figure 2-11 suggest that, according to TROPOMI, the 
emission inventory for NOx from Martin Lake and Limestone is over-reported, but this is difficult 
to reconcile with emissions from these power plants being measured in real-time by CEMS 
installed in their stacks.  
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Figure 2-11. TROPOMI and CAMx column NO2 for the period April – September 2019 for five power plants. 

There are moderate positive correlations between observed and modeled column NO2 over the 
five power plants of interest (Table 2-13). These correlations (r = 0.26 - 0.43) are overall greater 
than those over cities (r = 0.01 - 0.40; Table 2-12). 
 
Table 2-13. TROPOMI and CAMx model mean column NO2 for the period April – September 2019 and associated error metrics for 
five power plant locations. All units in 1015 molecules/cm2 unless otherwise noted. 

 
Power plant 

Model 
Mean 

TROPOMI 
mean 

  
RMSE 

Mean 
Error 

Mean 
Fractional 
Error (%) 

Mean 
Bias 

Mean 
Fractional 
Bias (%) 

  
r 

Fayette 4.90 1.62 4.76 3.35 92.18 3.30 89.22 0.26 
Forney 2.56 1.87 1.37 0.99 43.53 0.71 31.66 0.34 
Limestone 7.40 1.85 7.39 5.57 107.83 5.56 107.28 0.31 
Martin Lake 9.58 1.79 11.08 7.93 122.35 7.90 121.13 0.43 
Oklaunion 2.28 1.38 1.93 1.21 -48.84 0.91 -65.96 0.29 

 

2.3.3.2.2 Comparison with model columns calculated with updated AMF 

The comparison between TROPOMI and CAMx at the locations of large power plants had worse 
agreement; CAMx always yielded larger amounts than observed by TROPOMI, usually by a factor 
of 3 – 5 (Figure 2-12). We investigated the NOx plumes from Martin Lake, Limestone, and Sam 
Seymor; the plumes from Oklaunion and Forney could not be reliably differentiated from the 
background NO2 concentration. We think the combination of relatively smaller values (single 
power plant: ~10 Mg/hr vs. Dallas – Fort Worth: ~75 Mg/hr), narrow plume width, especially 
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short effective NO2 lifetime (high sun angle and breezy) are leading to the poor disagreement at 
the locations of power plants. This type of disagreement was not seen for the Colstrip Power 
Plant in Montana [Goldberg et al., 2019b], which has larger NOx emissions in an environment 
that supports a longer effective NO2 lifetime. While the correlation between CAMx and TROPOMI 
was smaller at the locations of power plants as compared to urban areas, the correlation when 
all three power plants were combined was r2=0.49, and r2=0.94 when the spatial variability of the 
model was imposed on the satellite observations. The moderate correlation without downscaling 
(r2=0.49) suggests that TROPOMI can discern power plant plumes from background 
concentrations. The significant increase in correlation when model spatial variability was 
imposed (r2=0.94) was expected and suggests that the native TROPOMI resolution is unable to 
capture the fine-scale features of power plant plumes, and that using a high-resolution PGM to 
further downscale the satellite measurements can be advantageous. 
 

 
Figure 2-12. NO2 tropospheric vertical column amounts averaged across April – September 2019 from TROPOMI, TROPOMI bias-
corrected, TROPOMI b-c CAMx AMFs, TROPOMI b-c CAMx AMFs + Downscaled, and CAMx for the largest three power plants 
(Martin Lake, Limestone and Sam Seymour (Fayette)). (Right) Scatterplot showing slope and correlation of various TROPOMI 
configurations and CAMx. 
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3.0 WHAT CAN WE LEARN ABOUT EMISSIONS FROM THE EMG METHOD?  
 
There are a number of methods that can be used to directly compare emissions and satellite data 
without a PGM. These range from direct comparison of temporal and spatial emissions patterns 
[e.g. Montgomery and Holloway, 2018], to more sophisticated methods that approximate the 
effects of meteorology and chemistry, even without the use of a three-dimensional model. 
 
As a first step in our analysis, daily TROPOMI NO2 and CAMx column NO2 data—with the 
TROPOMI averaging kernel applied—were compared with NOX emissions, to assess agreement 
in the absence of meteorological corrections.  
 
For our second step, we considered the statistical fit of the effective NO2 plume decay over time. 
This approach, originally proposed by Beirle et al. [2011], involves the statistical fitting of satellite-
observed NO2 plumes to a Gaussian function that exponentially decays over time (exponentially 
modified Gaussian; EMG). Daily NO2 plumes from TROPOMI were mapped onto an x-y grid and 
then rotated based on the daily wind-direction. As a result, all plumes were superimposed, 
increasing the signal-to-noise ratio and generating a more robust fit [Valin et al., 2013; Lu et al., 
2015; Goldberg et al., 2019a, 2019b, 2019c]. NOx emissions associated with plumes were 
calculated using the following equation:  
 
NOx emissions = 1.33 (α / τeffective ),  where  τeffective = xo /w     (1) 
 
In this equation, τeffective represents the mean effective NO2 lifetime and is a combination of the 
photochemical lifetime and dispersion lifetime [de Foy et al., 2014]; xo represents the fitted decay 
distance; w represents wind speed; and α represents total burden obtained by the exponentially 
modified Gaussian fit. NO2 is converted to NOX by multiplying by a factor of 1.33 which is typical 
of the mean column-averaged NOx/NO2 ratio in an urban area during the mid-afternoon. This 
ratio varies in space and time, as discussed in Goldberg et al. [2019b].  The effective NO2 ranged 
from 0.5 – 2.5 hours for this analysis; typically, the effective NO2 lifetime is 2 – 5 hours at other 
US cities and power plants [Goldberg et al., 2019b]. 
 
The wind speed and direction needed for these calculations was taken from the Ramboll WRF 
simulations at 12 and 4 km, and compared with more widely available re-analysis data (such as 
ERA-5). Mean near-surface wind speed over all days with valid satellite data was included. 
 
We applied the EMG method for all five cities and five power plants. The statistical fit had realistic 
solutions (appropriate fit and NO2 lifetime) for only one metropolitan area, Dallas Ft Worth, and 
one power plant, Limestone. The reason for the unrealistic fit for the other eight locations is 
probably due to a combination of especially short effective NO2 lifetimes in Texas during summer, 
and lack of instrument sensitivity to the relatively small NO2 plumes from the medium-sized cities 
on a day-to-day basis. 
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Results for Dallas Fort Worth and the Limestone Power plant are shown in Figure 3-1. On the left, 
is the standard TROPOMI NO2 product, in the center is re-processed TROPOMI NO2 product and 
on the right is the CAMx model simulation. In Dallas Fort Worth, the satellite-based NOX emissions 
were derived to be 71 Gg/yr in the early afternoon. The same method applied to the model 
simulation model yielded an estimate of 73 Gg/yr, which means the satellite and emissions 
inventory have excellent agreement. The value of 73 Gg/yr could have also been calculated using 
an effective radius of 70 km applied to the model-ready emissions, which represents three times 
the sigma (23 km) of the Gaussian plume. The effective NO2 lifetime was ~1.5 hours for the 
satellite and ~0.9 hours for the model, and is derived using Equation 1. This suggests that the 
model simulation might have a NO2 chemical lifetime that is too short. 
  
For the Limestone Power Plant, the satellite-based method estimated the NOx emissions to be 
2.7 Gg/yr, while reported emissions were 7.0 Gg/yr. This suggests that TROPOMI is having 
difficulty capturing the full magnitude of power plant plumes in Texas. This method has been 
applied to other power plants outside Texas, which are more isolated and have large emissions 
(e.g., Colstrip in Montana), and there is much better agreement at those locations. Further 
research will investigate this discrepancy at power plants in other US locations.   
 

 
Figure 3-1. EMG method to derive NOx emissions applied to (top) Dallas-Fort Worth and (bottom) Limestone Power Plant using 
TROPOMI. ERA5 100-m winds used to rotate daily TROPOMI NO2 plumes, while average of WRF winds between 0 - 500 m are used 
to rotate CAMx NO2 plumes. Tables on the right show the emissions for various “research-grade” TROPOMI products in addition 
to standard TROPOMI (TM5 AMF) product and CAMx. 
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4.0 WHAT CAN WE LEARN ABOUT EMISSIONS FROM SATELLITES WITHOUT 
PROCESSING? 

 

Despite the atmospheric processes that obscure the relationship between emissions and NO2 
column, there have been a number of applications where satellite data are used to directly infer 
spatial and temporal patterns in surface NOx emissions. Here we quantify that relationship 
relative to other methods discussed above. To benchmark the satellite-emissions relationship, 
we compare with the CAMx-calculated column NO2 (calculated with the averaging kernel) and its 
relationship to emissions. By examining the CAMx column, we have insight into the physical and 
chemical processes decoupling emissions from column abundance, independent of satellite 
accuracy.   

 
4.1 Direct Comparison of column NO2 and emissions from cities 
 
We find a weak relationship between TROPOMI and area NOx emissions, with correlations less 
than 0.2 (Figures 4-1 – 4-5). For example, in the Dallas – Fort Worth area r = 0.18 between 
TROPOMI NO2 and emissions (Figure 4-4).   

Even aside from satellite accuracy, multiple atmospheric processes decouple the relationship 
between emissions and column. To determine theoretical upper bound values, we calculated 
CAMx Correlations in daily modeled emissions vs. modeled column, which range r = 0.1 – 0.4 for 
the five study cities, and 0.0 – 0.5 for the five study power plants. As expected, actual TROPOMI 
vs. emissions correlations are worse these theoretical upper bound values with r-values ~0 – 0.2. 
On longer time periods, correlations improve. Figure 4-6 considers these comparisons for the 
case of DFW to highlight the different levels of agreement between emissions, surface NO2 (from 
model), column NO2 (from model), and column NO2 (from satellite).  

In general, we expect that NOx emissions have higher correlations with near-surface NO2 than 
with column NO2, given shorter pathways from emissions to ground-based monitors or simulated 
surface-layer amounts. With self-contained inputs, including meteorology, modeled emissions 
have higher correlations with modeled column amounts than with observed column amounts—
for the five cities discussed here, we find the relationships between emissions and TROPOMI NO2 
are about half as strong as the relationships between emissions and CAMx column NO2, as 
illustrated in Figure 4-6. 

 



 
43 

 
Figure 4-1. TROPOMI (left) and CAMx column NO2 (right) for Austin (Travis County) compared to aggregated anthropogenic area 
NOx emissions at the TROPOMI overpass (orange stars) and the daily average emissions (blue circles), for the period April – 
September 2019. 

 

 
Figure 4-2. TROPOMI (left) and CAMx column NO2 (right) for College Station (Brazos County) compared to aggregated 
anthropogenic area NOx emissions at the TROPOMI overpass (orange stars) and the daily average emissions (blue circles), for 
the period April – September 2019. 
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Figure 4-3. TROPOMI (left) and CAMx column NO2 (right) for Dallas and Fort Worth (Dallas and Tarrant counties, respectively) 
compared to aggregated anthropogenic area NOx emissions at the TROPOMI overpass (orange stars) and the daily average 
emissions (blue circles), for the period April – September 2019. 

 

 
Figure 4-4. TROPOMI (left) and CAMx column NO2 (right) for San Antonio (Bexar County) compared to aggregated 
anthropogenic area NOx emissions at the TROPOMI overpass (orange stars) and the daily average emissions (blue circles), for 
the period April – September 2019. 
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Figure 4-5. TROPOMI (left) and CAMx column NO2 (right) for Shreveport (Caddo County) compared to aggregated anthropogenic 
area NOx emissions at the TROPOMI overpass (orange stars) and the daily average emissions (blue circles), for the period April – 
September 2019.  

 
Figure 4-6. A summary of correlations among emissions and NO2 amounts as simulated by CAMx and observed by TROPOMI for 
Dallas-Fort Worth.  
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4.2 Direct Comparison of column NO2 and emissions from power plants 
 
Power plants may have similar NOx emissions as urban areas. NOx emissions for the five cities 
discussed above range up to ~1400 kg/hour, or ~1.5 tons/hour; NOx emissions for the five power 
plants discussed in this section range up to ~1.8 tons/hour. However, power plants have a smaller 
spatial footprint than urban areas, and as such, the emissions signature may be more affected by 
meteorological conditions and more challenging to detect on a daily basis than for urban areas. 
This challenge is illustrated in Figures 4-7 – 4-11, which present each TROPOMI overpass around 
each power plant over the course of July 2019. The emissions from Fayette (Sam Seymour) are 
evident in ~19% of overpasses (Figure 4-7); emissions from Forney are not clearly evident, and 
only slightly evident in 16% of overpasses (Figure 4-8); emissions from Limestone are evident in 
13.5% of overpasses (Figure 4-9); emissions from Martin Lake are evident in 40.5% of overpasses 
(Figure 4-10); emissions from Oklaunion are evident in ~43% of overpasses (Figure 4-11). 

  
Figure 4-7. Level-2 TROPOMI NO2 from each overpass over Fayette (a.k.a. Sam Seymour; location given by black dot in the 
center) during July 2019. Where emissions are clearly evident the overpass image is highlighted with green; where emissions are 
slightly evident the overpass image is highlighted with yellow; where emissions are not evident the overpass image is 
highlighted in red. 
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Figure 4-8. Level-2 TROPOMI NO2 from each overpass over Forney (location given by black dot in the center) during July 2019. 
Where emissions are clearly evident the overpass image is highlighted with green; where emissions are slightly evident the 
overpass image is highlighted with yellow; where emissions are not evident the overpass image is highlighted in red. 

 

 
Figure 4-9. Level-2 TROPOMI NO2 from each overpass over Limestone (location given by black dot in the center) during July 2019. 
Where emissions are clearly evident the overpass image is highlighted with green; where emissions are slightly evident the 
overpass image is highlighted with yellow; where emissions are not evident the overpass image is highlighted in red. 
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Figure 4-10. Level-2 TROPOMI NO2 from each overpass over Martin Lake (location given by black dot in the center) during July 
2019. Where emissions are clearly evident the overpass image is highlighted with green; where emissions are slightly evident the 
overpass image is highlighted with yellow; where emissions are not evident the overpass image is highlighted in red. 

 
Figure 4-11. Level-2 TROPOMI NO2 from each overpass over Oklaunion (location given by black dot in the center) during July 2019. 
Where emissions are clearly evident the overpass image is highlighted with green; where emissions are slightly evident the 
overpass image is highlighted with yellow; where emissions are not evident the overpass image is highlighted in red. 
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As seen in the relationships between city-area column NO2 and NOx emissions, we find similar 
correlations between emissions at the mid-day TROPOMI overpass time and mid-day column 
NO2, and between daily average power plant NOx emissions and mid-day column NO2 (Figures 4-
12 – 4-16). Similar to our evaluation over cities, too, we find greater correlations between model 
column NO2 and power plant NOx (r = -0.10 - 0.25) than between TROPOMI NO2 and power plant 
NOx (r = 0.02 - 0.49; Figures 4-12 – 4-16). 

 

 
Figure 4-12. TROPOMI (left) and CAMx column NO2 (right) compared to NOx emissions at Fayette at the TROPOMI overpass 
(orange stars) and the daily average emissions (blue circles), for the period April – September 2019. 

 
Figure 4-13. TROPOMI (left) and CAMx column NO2 (right) compared to NOx emissions at Forney at the TROPOMI overpass (orange 
stars) and the daily average emissions (blue circles), for the period April – September 2019. 
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Figure 4-14. TROPOMI (left) and CAMx column NO2 (right) compared to NOx emissions at Limestone at the TROPOMI overpass 
(orange stars) and the daily average emissions (blue circles), for the period April – September 2019. 

 

 

 
Figure 4-15. TROPOMI (left) and CAMx column NO2 (right) compared to NOx emissions at Marin Lake at the TROPOMI overpass 
(orange stars) and the daily average emissions (blue circles), for the period April – September 2019. 
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Figure 4-16. TROPOMI (left) and CAMx column NO2 (right) compared to NOx emissions at Oklaunion at the TROPOMI overpass 
(orange stars) and the daily average emissions (blue circles), for the period April – September 2019. 

 
The fraction of NOx that attributed to onroad mobile emissions for the Dallas-Ft Worth area are 
shown in Table 4-1. In Dallas, mobile source emissions represent approximately 1/3 of all NOx 
emissions. While this value seems appropriate for the full metropolitan area, we would have 
expected the fraction to have been larger in the downtown urban core. This suggests a potential 
spatial misallocation, but otherwise the magnitude of onroad mobile NOx emissions in the 
aggregated metropolitan area appears to be reasonable, as discussed in earlier sections. 
  
Table 4-1. Total and mobile NOx emissions within various radii of the Dallas city center 

Dallas Ft Worth 
Radius All NOx 

(Gg/yr) 
Fraction 
onroad
mobile 

Onroad mobile 
NOx (Gg/yr) 

5 km 1.8 0.33 0.6 
10 km 4.5 0.40 1.8 
20 km 18 0.32 5.6 
30 km 33 0.33 11 
40 km 48 0.33 16 
50 km 58 0.34 20 
60 km 65 0.34 22 
70 km 73 0.33 24 
80 km 81 0.32 26 
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5.0 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 
 

Through this analysis, we have concluded that a 3-D model is really the only tool for evaluating 
emission inventories on a regional and daily scales, supporting comparison with ground-based 
and satellite data. To support TCEQ in future model-satellite comparisons, we have updated the 
Wisconsin Horizontal Interpolation Program for Satellites (WHIPS) to process TROPOMI, and 
provided additional guidance and comparison on “user-friendly” and “research-grade” model-
satellite comparison approaches. Gaussian plume methods succeed for well-detected sources 
over longer timescales, offering a lower-cost strategy to account for meteorology and chemistry. 
Although this work was motivated by the idea that satellite data provides a “check” on models 
and emission inventories, there were instances where disagreement suggests errors in the 
satellite’s detection ability. 

5.1 Summary of Findings 
 
Overall, we find CAMx shows skill relative to ground- and satellite-based observations. However, 
the complicated pathways between emissions and column amounts render only moderate 
relationships between emissions and modelled column amounts; the relationships between 
emissions and TROPOMI NO2 are complicated further by meteorology and ongoing work to 
improve satellite retrievals. The EMG methodology addresses the impact of meteorological 
differences between observations and modelling, yet we find the TROPOMI NO2 retrieval used in 
this work has limited application to directly informing emissions inventories. 
 
Compared to ground-based observations over the April – September 2019 study period, we find 
that CAMx shows good skill in identifying low and high ozone days for cities in Texas with R2 
values from 0.56 (Austin) to 0.61 (Tyler). CAMx has a positive ozone bias that is regional across 
eastern Texas but does not lead to excessive model error. We found that CAMx performs well in 
simulating the amount of ozone produced by emissions in the DFW area. We attempted to 
evaluate CAMx NO2 performance focusing on the mid-day time period when satellite NO2 
measurements are made, but the evaluation was hampered by instrument detection limits and 
locations. 
 
Compared to TROPOMI NO2 columns, we find CAMx also shows skill, and has an overall positive 
bias of about 13%, depending on the domain. To the best of our knowledge, there is no prior 
work describing CTM performance over the U.S. with respect to TROPOMI NO2 to compare with 
this study. However, past work shows both the operational retrieval and “research grade” 
TROPOMI NO2 products have a low bias relative to ground-based tropospheric column 
measurements over North America [Griffin et al., 2019; Judd et al., 2020; Zhao et al., 2020].  We 
demonstrate that a bias-corrected TROPOMI largely removes the aforementioned 13% 
difference, thus concluding that Texas urban NOx emissions inventory are within the uncertainty 
bounds of the accuracy of the satellite measurement. 
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We find disagreement between CAMx and TROPOMI near power plants, with the CAMx columns 
being larger. This positive bias is seen both in a direct comparison of TROPOMI NO2 with 
simulated column amounts (with TROPOMI averaging kernel applied), and with TROPOMI NO2 
refactored using model-derived a priori profiles and variability. With differences in native 
resolution and the ratio of emissions relative to background amounts, some power plants and 
smaller urban areas could not be meaningfully differentiated in TROPOMI observations. The 
inability of TROPOMI to detect power plants was even greater for SO2, as illustrated in Figure B-
1. While the lower TROPOMI NO2 columns might be interpreted to suggest that the CAMx NOx 
emission inventory for major power plants (i.e., Martin Lake and Limestone) is over-reported, 
such an assertion would be difficult to reconcile with the CAMx emissions for these power plants 
being traceable to real-time emission measurements (by CEMS) in the power plant stacks. 
 
In our TROPOMI-CAMx column NO2 comparison, we find CAMx overestimates column NO2 by 
~4% (Dallas) to 25% (San Antonio); when we correct simulated background NO2, we find NO2 
matches observed amounts very well in urban areas (<5% difference in the investigated cities 
when aggregated). When meteorological conditions are accounted for via EMG analysis, we find 
differences in modeled and observed NO2 are likely the result of spatial misallocation of 
emissions rather than an areawide magnitude disagreement.  
 
We find poor agreement between TROPOMI and CAMx over power plants. In our direct 
comparison, we find an average correlation of 0.33, not including two power plants that could 
not be meaningfully differentiated from background observations (Forney and Oklaunion). Since 
power plant emissions are well constrained by in-stack measurements, this disagreement is likely 
the result of the difficulties in resolving narrow plume widths, and short effective NO2 lifetimes. 
When we imposed model variability on TROPOMI NO2, the correlation for Martin Lake, 
Limestone, and Sam Seymour (Fayette) improved from 0.47 to 0.91.  
 
Although best-practice, the utilization of a PGM, such as CAMx, is time-consuming and requires 
specialized knowledge. We characterized the relationship between emissions and satellite-based 
observations both directly and with the EMG method. These simpler methods offer the potential 
for TCEQ to perform emissions evaluation with satellite data analysis over multiple years and/or 
considering multiple emission scenarios at a greatly reduced cost. We found the EMG most useful 
for determining aggregated emissions from relatively large urban areas, such as Dallas-Fort 
Worth, and less useful for smaller urban areas (e.g. Austin, College Station, and San Antonio) and 
power plants in Texas. 
 
Without processing by the CAMx model or EMG, relationships between TROPOMI NO2 column 
and emissions are poorly defined, highlighting the value of more advanced approaches. The low 
agreement between satellite and emissions may be partially explained by physical and chemical 
processes decoupling emissions from column abundance. These physical processes were isolated 
by comparing CAMx-calculated columns with emissions (in a manner parallel to the comparison 
of TROPOMI data and emissions). Whereas the correlation between CAMx NO2 column and NOx 
emissions over urban counties varies from 0.10 – 0.38, the correlation between TROPOMI NO2 
and NOx emissions varies from -0.01 – 0.18. Where the correlation between CAMx NO2 column 
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and NOx emissions from power plants varies from 0.02 – 0.49, the correlation between TROPOMI 
NO2 and NOx emissions varies from -0.10 – 0.25.   
 
Multiple atmospheric processes decouple the relationship between NOx emissions and column 
NO2. Satellite data, on their own, offer qualitative information on emission patterns and trends, 
but data resolution and retrieval inputs may weaken the suitability of satellite data for 
quantitative emission inventory evaluation. The relationship between TROPOMI NO2 and NOx 
emissions is strengthened when meteorological conditions are accounted for, as used in the EMG 
analysis. As such, we find the more streamlined and less computationally intensive EMG analysis 
is suitable for informing emissions where observed column NO2 is greater than background 
amounts.  
 
 
5.2 Recommendations for Future Work 

• A substantial portion of the NO2 column resides above the PBL and this NO2 can strongly 
influence comparisons between satellite and modeled NO2 columns. CAMx showed 
reasonable performance in simulating NO2 in the free troposphere. Nevertheless, we 
recommend continued efforts to improve the CAMx simulation of NO2 in the mid- to 
upper-troposphere by focusing on: (1) emission estimates for lightning and aircraft NOx 
(2) representation of NOx influx from the lower-stratosphere to the upper-troposphere 
(3) ventilation of NOy from the PBL to the mid-troposphere (4) photochemical production 
of NO2 from NOy (especially organic nitrates) in the mid- to upper-troposphere. 

• We found TROPOMI NO2 was generally lower than CAMx column amounts, which is 
consistent with prior work comparing TROPOMI with ground-based tropospheric column 
measurements. In fact, at the end of this study (July 2021), the TROPOMI retrieval was 
updated to address the documented low bias. Given the likelihood that the new TROPOMI 
NO2 retrieval shows an improved agreement with CAMx column NO2, it may be 
worthwhile to quantify resulting changes in TROPOMI relationships with emissions over 
urban areas, and especially over power plants. 

• We found poor agreement between TROPOMI and CAMx NO2 columns near major power 
plants in Texas. Additional study is needed with consideration of the both the TROPOMI 
data products (particularly the horizontal resolution of the a priori NO2 column used in 
calculating the averaging kernel) and the model simulations (e.g. the vertical distribution 
of NO2, photochemical lifetime of NO2 in power plant plumes). It would be helpful to have 
column measurements, such as GeoTASO or Pandora, to further validate TROPOMI 
measurements in the presence of power plant plumes.  

• Future work could address challenges with SO2, but may require careful processing to 
discern a clear emissions signal from TROPOMI. The TEMPO satellite planned for launch 
in 2022 will provide higher resolution, hourly SO2 data. These may be needed for 
meaningful SO2 analysis for Texas power plants.  
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6.0  AUDITS OF DATA QUALITY 
 
We performed Quality Assurance/Quality Control (QA/QC) procedures in accordance with the 
Quality Assurance Project Plan (QAPP) completed at the beginning of this project. Per 
requirements for Category III projects, we performed data audits on at least 10% of the data sets. 
In this section, we report the results of our QA/QC. 
 
6.1 CAMx simulations 
The WRF-CAMx model was run by Ramboll. Validation of WRF-CAMx modeling with the NRTEEM 
platform is described by Johnson et al. [2019]. Ambient NOX concentrations simulated by the 
WRF-CAMx modeling were compared with all available ground-based observations of NOX during 
the modeling time period, as detailed in Section 3.1. 
 
6.2 TROPOMI screening 
We employed two methodologies for comparison of model column NO2 with TROPOMI NO2. The 
direct-comparison methodology used model column amounts calculated with the application of 
the TROPOMI averaging kernel. As appropriate for work where the averaging kernel is applied, 
this methodology used all TROPOMI data where the quality assurance flag was greater than 0.5 
[Eskes, 2021]. Our second method entailed a recalculation of the air mass factor, which is a 
component of the averaging kernel, using CAMx column NO2. Since this method did not employ 
the averaging kernel, for this methodology we used all TROPOMI data where the quality 
assurance flag was greater than 0.75. The latter TROPOMI VCD screening was also employed for 
the EMG analysis. We found the April – September 2019 TROPOMI NO2 average calculated with 
the two methodologies was within 10%, with larger TROPOMI NO2 amounts when data was 
screened using a quality assurance flag of 0.5.  
 
6.3 EMG Analysis 
The EMG technique presented by Goldberg et al. [2019a, 2019b, 2019c] was selected for its ability 
to produce emission estimates directly from TROPOMI data with minimal additional data. 
Calculation of parameters in the EMG approach are based on wind speed and direction, which 
were taken from the Ramboll WRF simulations at 4km. We also applied the EMG technique using 
widely available re-analysis data, the ECMWF ERA-5 [Hersbach et al., 2020], for the purpose of 
anticipating how using re-analysis data (rather than WRF simulations) may influence the EMG 
analysis in the future if WRF simulations are not available. We focused on the meteorological 
parameter that EMG uses, wind speed. We found the NOX emissions that resulted from using the 
two different wind speed datasets were within 20%. Therefore, wind speed may contribute up 
to a third of the total uncertainty of the EMG method (~60%). 
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APPENDIX A 
 
Here we present monthly TROPOMI and CAMx column NO2 (with the averaging kernel) for each 
month of the study period. Figures A-1 and A-2, along with Tables A-1 and A-2 show monthly 
column NO2, differences, and comparison metrics for each domain. Figures A-3 and A-4 present 
a zoom-in of the larger 12 km resolution domain over western Texas. 
 
Table A-1 TROPOMI and CAMx model mean column NO2 for the months April – September 2019 and associated error metrics for 
the 12 km domain. All units in 1015 molecules/cm2 unless otherwise noted. 

 Model 
Mean 

TROPOMI 
mean 

  
RMSE 

Mean 
Error 

Mean 
Fractional 
Error (%) 

Mean 
Bias 

Mean 
Fractional 
Bias (%) 

  
r 
 

April 0.84 0.94 1 0.43 97.52 -0.1 49.52 0.3 
May 0.94 0.88 0.84 0.42 49.28 0.06 17.19 0.36 
June 1.14 0.97 0.97 0.47 39.57 0.17 16.56 0.32 
July 1.34 1.08 0.85 0.42 37.66 0.25 24.7 0.39 
August 1.51 1.14 1 0.53 35.86 0.37 24.83 0.37 
September 1.28 1.1 0.79 0.4 35.12 0.18 16.59 0.37 

 
 
Table A-2 TROPOMI and CAMx model mean column NO2 for the months April – September 2019 and associated error metrics for 
the 4 km domain. All units in 1015 molecules/cm2 unless otherwise noted. 

 Model 
Mean 

TROPOMI 
mean 

  
RMSE 

Mean 
Error 

Mean 
Fractional 
Error (%) 

Mean 
Bias 

Mean 
Fractional 
Bias (%) 

  
r 
 

April 0.94 1.12 0.94 0.47 46.9 -0.19 -2.25 0.44 
May 1.05 0.99 0.74 0.46 49.43 0.06 19.31 0.44 
June 1.27 1.04 0.9 0.56 50.39 0.23 30.96 0.4 
July 1.4 1.15 0.67 0.45 37.67 0.25 24.96 0.52 
August 1.59 1.19 0.87 0.58 45.35 0.4 35.69 0.42 
September 1.36 1.19 0.62 0.42 34.15 0.17 16.01 0.47 
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Figure A-1 April – September monthly 2019 average NO2 column amounts from TROPOMI as gridded with WHIPS (left) and CAMx 
with the averaging kernel applied (middle) for the 12 km domain. Absolute difference between CAMx and TROPOMI shown in 
right column. 
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Figure A-2 April – September monthly 2019 average NO2 column amounts from TROPOMI as gridded with WHIPS (left) and CAMx 
with the averaging kernel applied (middle) for the 4 km domain. Absolute difference between CAMx and TROPOMI shown in right 
column. 
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Figure A-3 April – September average 2019 average NO2 column amounts from TROPOMI as gridded with WHIPS (left) and CAMx 
with the averaging kernel applied (middle) for the 12 km domain over western Texas and New Mexico. Absolute difference 
between CAMx and TROPOMI shown in right column. 
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Figure A-4 April – September monthly 2019 average NO2 column amounts from TROPOMI as gridded with WHIPS (left) and CAMx 
with the averaging kernel applied (middle) for the 12 km domain over western Texas and New Mexico. Absolute difference 
between CAMx and TROPOMI shown in right column. 
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APPENDIX B  
 
We had planned to expand our analysis to SO2 to a limited extent as resource and data integrity 
allow. Our NO2 analysis highlighted nuances in satellite retrieval algorithms and in processing 
model column estimates, and our team agreed that expanding our analysis to include SO2 would 
not be simple, and would require resources and time beyond what is available. Furthermore, 
satellite capability to observe SO2 is even more limited than NO2 (and NO2 was less robust than 
expected). Figure B-1 shows daily Level-2 TROPOMI SO2 over the Oklaunion power plant, which 
may be compared with Figure 4-11 for the same area and time period. Where the power plant 
plume is evident in 43% of days for NO2, but 0% of days for SO2. However, CAMx modelling still 
included SO2 amounts, and here we present in Figures B-2 and B-3 the seasonal and monthly 
average CAMx column SO2 as calculated without the TROPOMI SO2 averaging kernel.  

 
 
 Figure B-1 July 2019 daily Level-2 SO2 column amounts from TROPOMI over the Oklaunion power plant. Compare with Figure 4-
11 for NO2.  
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Figure B-2 April – September average 2019 average SO2 column amounts from CAMx  for the 12km domain (left), the 12km domain 
zoomed in to western Texas  (middle), and for the 4 km domain (right). 
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Figure B-3 April – September monthly 2019 average SO2 column amounts from CAMx  for the 12km domain (left), the 12km domain 
zoomed in to western Texas  (middle), and for the 4 km domain (right). 
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